1 (6+4+8=18 pts)

Observability and detectability

Consider the system Σ :

$$\dot{x}(t) = Ax(t), \ y(t) = Cx(t)$$

with state space \mathbb{R}^n and output space \mathbb{R}^p .

- (a) Assume that the system is observable. Show that if y(t) = 0 for all $t \ge 0$ then x(t) = 0 for all $t \ge 0$.
- (b) Let $G \in \mathbb{R}^{n \times p}$. Show that x and y satisfy the equations of the system Σ if and only if they satisfy the equations

$$\dot{x}(t) = (A - GC)x(t) + Gy(t), \ y(t) = Cx(t).$$

(c) Now assume that Σ is detectable. Use the result in (b) to show that if y(t) = 0 for all $t \ge 0$ then $x(t) \to 0$ as $t \to \infty$.

Consider the system $\dot{x}(t) = Ax(t) + Bu(t)$ with state space $\mathcal{X} = \mathbb{R}^n$. A subspace \mathcal{V} of \mathcal{X} is called a *stabilizability subspace* if for every $x_0 \in \mathcal{V}$ there exists an input function u such that $x_u(t, x_0) \in \mathcal{V}$ of all $t \ge 0$, and $\lim_{t\to\infty} x_u(t, x_0) = 0$.

- (a) Let \mathcal{V} be a stabilizability subspace. Show that \mathcal{V} is controlled invariant.
- (b) Show that the sum of two stabilizability subspaces is again a stabilizability subspace.
- (c) Let \mathcal{K} be a given subspace of \mathcal{X} . Show that there exists a largest stabilizability subspace $\mathcal{V}_s^*(\mathcal{K})$ contained in \mathcal{K} .
- (d) Let $\mathcal{V}^*(\mathcal{K})$ be the largest controlled invariant subspace contained in \mathcal{K} . Show that $\mathcal{V}^*_s(\mathcal{K}) \subset \mathcal{V}^*(\mathcal{K})$.

3	(3 +	6 +	9 =	18	pts))
---	------	-----	-----	----	------	---

Controlled invariant subspaces

Stabilizability subspaces

Consider the system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t).$$

with state space \mathbb{R}^n , input space \mathbb{R}^m , and output space \mathbb{R}^p . For a controlled invariant subspace \mathcal{V} , the set of 'friends' are defined by $\mathcal{F}(\mathcal{V}) := \{F \in \mathbb{R}^{n \times m} \mid (A + BF)\mathcal{V} \subseteq \mathcal{V}\}$. Let \mathcal{V}^* be the largest controlled invariant subspace that is contained in ker C. Show that

- (a) $(A + BF + GC)\mathcal{V}^* \subseteq \mathcal{V}^*$ for every $F \in \mathcal{F}(\mathcal{V}^*)$ and $G \in \mathbb{R}^{n \times p}$.
- (b) the unobservable subspace $\langle \ker C \mid A \rangle$ is contained in \mathcal{V}^* .
- (c) there exists $F \in \mathcal{F}(\mathcal{V}^*)$ such that $\langle \ker C \mid A \rangle \subseteq \ker F$.

Consider the system

$$\dot{x} = Ax + Bu + Ed$$
$$y = Cx$$
$$z = Hx$$

with

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, E = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, H = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}.$$

(a) Show that the problem of disturbance decoupling (from d to z) by measurement feedback is solvable for this system.

- (b) Compute a dynamic controller Γ that makes the system from d to z decoupled.
- **5** (18 pts)

Tracking and regulation

Consider the system given as the interconnection of the exosystem

 $\dot{x}_1(t) = 0$

and the control system

$$\begin{split} \dot{x}_2(t) &= -x_2(t) + x_4(t) + x_1(t) \\ \dot{x}_3(t) &= x_4(t) \\ \dot{x}_4(t) &= x_2(t) + 3x_3(t) + 2x_4(t) + u(t) \\ y(t) &= \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} \\ z(t) &= -x_1(t) + x_2(t). \end{split}$$

Construct a regulator.

10 pts free